SageMakerModelOperator

Amazon

Creates a model in Amazon SageMaker. In the request, you name the model and describe a primary container. For the primary container, you specify the Docker image that contains inference code, artifacts (from prior training), and a custom environment map that the inference code uses when you deploy the model for predictions.

View on GitHub

Last Updated: Feb. 27, 2023

Access Instructions

Install the Amazon provider package into your Airflow environment.

Import the module into your DAG file and instantiate it with your desired params.

Parameters

configRequiredThe configuration necessary to create a model. For details of the configuration parameter see SageMaker.Client.create_model()
aws_conn_idThe AWS connection ID to use.
Dict

Documentation

Creates a model in Amazon SageMaker. In the request, you name the model and describe a primary container. For the primary container, you specify the Docker image that contains inference code, artifacts (from prior training), and a custom environment map that the inference code uses when you deploy the model for predictions.

See also

For more information on how to use this operator, take a look at the guide: Create an Amazon SageMaker model

Was this page helpful?