Run this DAG
1. Install the Astronomer CLI:Skip if you already have the CLI
2. Initate the project in a local directory:
3. Copy and paste the code below into a file in the
dagsdirectory.
4. Add the following to your
requirements.txtfile:
5. Run the DAG from the local directory where the project was initiated:
#! /usr/bin/env python# -*- coding: utf-8 -*-## Adapted from example dags in Airflow's documentation, see also## https://airflow.apache.org/docs/apache-airflow/stable/tutorial_taskflow_api.html#from datetime import datetimeimport numpy as npimport pandas as pdfrom airflow.decorators import dagfrom airflow.decorators import taskfrom airflow.operators.dummy_operator import DummyOperatorfrom airflow.utils.dates import days_agodefault_args = {'owner': 'airflow','depends_on_past': True,'start_date': days_ago(2),}@task()def build_dataframe() -> pd.DataFrame:"""#### build random dataframe task"""df = pd.DataFrame(np.random.randint(0, 1000, size=(1000, 6)), columns=list("ABCDEF"))return df@task()def sum_cols(df: pd.DataFrame) -> pd.DataFrame:"""#### Transform"""print('df = ', df)return pd.DataFrame(df.sum()).T@task()def pick_least(df: pd.DataFrame) -> int:min_val = df.T.min()print("Min Val is %d" % min_val)return min_val@task()def pick_greatest(df: pd.DataFrame) -> int:max_val = df.T.max()print("Max Val is %d" % max_val)return max_val@task()def calc_mean(df: pd.DataFrame) -> int:mean = df.T.mean()print("Mean Val is %.2f" % mean)return mean@task()def calc_std_dev(df: pd.DataFrame) -> int:std = df.T.std()print("Std Deviation is %.2f" % std)return std@task()def calc_variance(df: pd.DataFrame) -> int:var = df.T.var()print("Variance Val is %.2f" % var)return var@task()def calc_median(df: pd.DataFrame) -> int:median = df.T.median()print("Median Val is %.2f" % median)return median@task()def load_results(min_val: int, max_val: int, mean: float, std: float, variance: float, median: float) -> None:"""#### Load taskThis will print max and min"""print("The final min is: %d" % min_val)print("The final max is: %d" % max_val)print("The final mean is: %.2f" % mean)print("The final std dev is: %.2f" % std)print("The final var is: %.2f" % variance)print("The final median is: %.2f" % median)@dag(default_args=default_args,schedule_interval=None,start_date=datetime(2021, 3, 11),tags=["finished-pandas-example"],catchup=False,)def taskflow_v6d():build_raw_df = build_dataframe()sum_cols_r = sum_cols(build_raw_df)pick_least_r = pick_least(sum_cols_r)pick_greatest_r = pick_greatest(sum_cols_r)calc_mean_r = calc_mean(sum_cols_r)calc_std_dev_r = calc_std_dev(sum_cols_r)calc_variance_r = calc_variance(sum_cols_r)calc_median_r = calc_median(sum_cols_r)load_results_r = load_results(pick_least_r,pick_greatest_r,calc_mean_r,calc_std_dev_r,calc_variance_r,calc_median_r,)kickoff_dag = DummyOperator(task_id="kickoff_dag")complete_dag = DummyOperator(task_id="complete_dag")kickoff_dag >> build_raw_df # pylint: disable=pointless-statementload_results_r >> complete_dag # pylint: disable=pointless-statementtaskflow_v6d_dag = taskflow_v6d()