branch_operator
Example DAG demonstrating the usage of the BranchPythonOperator.
Airflow Fundamentals
Providers:
Run this DAG
1. Install the Astronomer CLI:Skip if you already have the CLI
2. Initate the project in a local directory:
3. Copy and paste the code below into a file in the
dagsdirectory.
4. Run the DAG from the local directory where the project was initiated:
## Licensed to the Apache Software Foundation (ASF) under one# or more contributor license agreements. See the NOTICE file# distributed with this work for additional information# regarding copyright ownership. The ASF licenses this file# to you under the Apache License, Version 2.0 (the# "License"); you may not use this file except in compliance# with the License. You may obtain a copy of the License at## http://www.apache.org/licenses/LICENSE-2.0## Unless required by applicable law or agreed to in writing,# software distributed under the License is distributed on an# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY# KIND, either express or implied. See the License for the# specific language governing permissions and limitations# under the License."""Example DAG demonstrating the usage of the Classic branching Python operators.It is showcasing the basic BranchPythonOperator and its sisters BranchExternalPythonOperatorand BranchPythonVirtualenvOperator."""from __future__ import annotationsimport randomimport sysimport tempfilefrom pathlib import Pathimport pendulumfrom airflow.models.dag import DAGfrom airflow.operators.empty import EmptyOperatorfrom airflow.operators.python import (BranchExternalPythonOperator,BranchPythonOperator,BranchPythonVirtualenvOperator,ExternalPythonOperator,PythonOperator,PythonVirtualenvOperator,)from airflow.utils.edgemodifier import Labelfrom airflow.utils.trigger_rule import TriggerRulePATH_TO_PYTHON_BINARY = sys.executablewith DAG(dag_id="example_branch_operator",start_date=pendulum.datetime(2021, 1, 1, tz="UTC"),catchup=False,schedule="@daily",tags=["example", "example2"],orientation="TB",) as dag:run_this_first = EmptyOperator(task_id="run_this_first",)options = ["a", "b", "c", "d"]# Example branching on standard Python tasks# [START howto_operator_branch_python]branching = BranchPythonOperator(task_id="branching",python_callable=lambda: f"branch_{random.choice(options)}",)# [END howto_operator_branch_python]run_this_first >> branchingjoin = EmptyOperator(task_id="join",trigger_rule=TriggerRule.NONE_FAILED_MIN_ONE_SUCCESS,)for option in options:t = PythonOperator(task_id=f"branch_{option}",python_callable=lambda: print("Hello World"),)empty_follow = EmptyOperator(task_id="follow_" + option,)# Label is optional here, but it can help identify more complex branchesbranching >> Label(option) >> t >> empty_follow >> join# Example the same with external Python calls# [START howto_operator_branch_ext_py]def branch_with_external_python(choices):import randomreturn f"ext_py_{random.choice(choices)}"branching_ext_py = BranchExternalPythonOperator(task_id="branching_ext_python",python=PATH_TO_PYTHON_BINARY,python_callable=branch_with_external_python,op_args=[options],)# [END howto_operator_branch_ext_py]join >> branching_ext_pyjoin_ext_py = EmptyOperator(task_id="join_ext_python",trigger_rule=TriggerRule.NONE_FAILED_MIN_ONE_SUCCESS,)def hello_world_with_external_python():print("Hello World from external Python")for option in options:t = ExternalPythonOperator(task_id=f"ext_py_{option}",python=PATH_TO_PYTHON_BINARY,python_callable=hello_world_with_external_python,)# Label is optional here, but it can help identify more complex branchesbranching_ext_py >> Label(option) >> t >> join_ext_py# Example the same with Python virtual environments# [START howto_operator_branch_virtualenv]# Note: Passing a caching dir allows to keep the virtual environment over multiple runs# Run the example a second time and see that it re-uses it and is faster.VENV_CACHE_PATH = Path(tempfile.gettempdir())def branch_with_venv(choices):import randomimport numpy as npprint(f"Some numpy stuff: {np.arange(6)}")return f"venv_{random.choice(choices)}"branching_venv = BranchPythonVirtualenvOperator(task_id="branching_venv",requirements=["numpy~=1.24.4"],venv_cache_path=VENV_CACHE_PATH,python_callable=branch_with_venv,op_args=[options],)# [END howto_operator_branch_virtualenv]join_ext_py >> branching_venvjoin_venv = EmptyOperator(task_id="join_venv",trigger_rule=TriggerRule.NONE_FAILED_MIN_ONE_SUCCESS,)def hello_world_with_venv():import numpy as npprint(f"Hello World with some numpy stuff: {np.arange(6)}")for option in options:t = PythonVirtualenvOperator(task_id=f"venv_{option}",requirements=["numpy~=1.24.4"],venv_cache_path=VENV_CACHE_PATH,python_callable=hello_world_with_venv,)# Label is optional here, but it can help identify more complex branchesbranching_venv >> Label(option) >> t >> join_venv